

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 1 of 29

Software Testing
Verity Voting System 3.0

Report Date: 2018-09-07

Version: 2.0

Status: FINAL

Classification: Public

atsec information security corporation
9130 Jollyville Road, Suite 260
Austin, TX 78759
Tel: +1 512 615 7300
Fax: +1 512 615 7301
www.atsec.com

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 2 of 29

Revision history

Version Change date Author(s) Changes to previous version

1.0 2018-07-09 Ryan Hill Initial draft

1.1 2018-07-27 Ryan Hill Second draft

2.0 2018-09-07 Ryan Hill Updated based on customer feedback.

Trademarks

atsec and the atsec logo are registered trademarks of atsec information security
corporation.

Verity is a trademark of Hart InterCivic, Inc.

FCMG and the FCMG Logo are registered trademarks of the Freeman, Craft, McGregor
Group.

Microsoft, Windows, .NET, and SQL Server are registered trademarks of Microsoft
Corporation.

MITRE is a registered trademark of The MITRE Corporation.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 3 of 29

Table of Contents
1 Executive Summary ... 5
2 Introduction .. 6

2.1 Scope and Basis ... 6
2.2 Inputs .. 7
2.3 Threat Model .. 7
2.4 Methodology ... 8

2.4.1 Potential vulnerabilities .. 10
2.4.2 Code quality ... 10
2.4.3 Design ... 10
2.4.4 Cryptography ... 11
2.4.5 Back doors ... 11
2.4.6 Measurement of findings ... 11
2.4.7 Depth of analysis ... 12

3 Description of the Verity Voting System ... 13
3.1 Voting System Functions .. 13
3.2 Physical Components ... 13
3.3 Logical Components ... 14
3.4 Interfaces .. 14

3.4.1 Network interfaces ... 14
3.4.2 Peripheral devices ... 15
3.4.3 Files ... 15
3.4.4 Databases ... 16

4 Findings ... 17
4.1 Public Vulnerability Search ... 17
4.2 Static Code Analysis & Documentation Review .. 19

Glossary ... 24
References ... 26

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 4 of 29

List of Tables
Table 1: Device/Area Media ... 15
Table 6: Potential Vulnerabilities Identified ... 19
Table 7: Summary of issues discovered during the static code analysis 23

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 5 of 29

1 Executive Summary
This report was prepared by atsec information security corporation to review aspects of
the security and integrity of the Verity Voting System v. 3.0. atsec is an independent,
third-party company providing information-security assurance related services.

This report identifies security weaknesses and vulnerabilities found through static code
review and by searches of public vulnerability sources. The search focused particularly
on those that could be exploited to alter vote recording, vote results, critical election data
such as audit logs, or to conduct a denial of service attack on the voting system.

It should be noted that the public vulnerability search is most likely to identify
vulnerabilities that have been reported in commonly used commercial off the shelf
system components.

The static code analysis revealed 10 issues, the public vulnerability search identified 9
vulnerabilities that could potentially be used for an attack on the voting system. Of the 10
issues found by static code analysis, 5 were assessed to be of medium severity and 5
were assessed to be of low severity.

At a high level, weaknesses and vulnerabilities were identified that can be attributed to
difficulties resulting from an aging and repeatedly modified system. These include the
following.

 Use of old 3rd party code containing publicly known vulnerabilities
 Instances of incorrect error or exception handling
 Use of outdated crypto algorithms and key lengths which become more

susceptible to attack over time
 Hard coded passwords and unenforced password complexity rules
 Poor password storage methods
 Inclusion of code that is no longer used
 Possibly weak or duplicated initialization vectors
 SQL query best practices are not followed
 Instances of poor audit logging
 Inconsistent design such as varying requirements for password strength

In addition, numerous less severe but still noteworthy vulnerabilities were found related
to code quality and non-conformance to the California Voting System Standards. See
section 4 for all findings.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 6 of 29

2 Introduction
This report was prepared by atsec information security corporation to review aspects of
the security and integrity of the Verity Voting System v3.0. It has been prepared in
support of a contract awarded to Freeman, Craft, McGregor Group, Inc. This project has
a goal to provide voting system test support services to assist the California Secretary of
State (SOS) with the evaluation of the Verity Voting System v3.0 for its suitability for use
in the State of California in accordance with Elections Code sections 19001 et seq.

The source code review was performed by the following atsec information security
corporation consultants.

 Fiona Pattinson (Project Manager)

 King Ables (Lead Reviewer)

 Jason Gorgeoulis (Reviewer)

 Demetrius Kellum (Reviewer)

 Sean Lewis (Reviewer)

 Dick Sikkema (Reviewer)

 Ryan Hill (Documentation Specialist)

This document identifies the security vulnerabilities found through static code review and
by searches of public vulnerability sources that could be exploited to alter vote recording,
vote results, critical election data, such as audit logs, or to conduct a denial of service
attack on the voting system.

2.1 Scope and Basis

The Verity Voting System (EVS) v3.0 (hereafter referred to as the “voting system” or
simply as the “system”) is a paper-based voting system made up of software, hardware,
device, and peripheral components.

The system has the following software components:

 Verity Data—Ballot design software

 Verity Build—Election definition and media creation/ballot printing software

 Verity Central—Central ballot scanning and adjudication software

 Verity Count—Ballot tabulation and reporting software

The system can be set up to support one or more of the following hardware components:

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 7 of 29

 Verity Print—On-demand ballot printing device

 Verity Touch Writer—Accessible ballot marking device

 Verity Reader—Optional ballot verification device

 Verity Scan—Ballot scanning device

 Verity vDrive—Specially formatted USB media used for data transfers

 Verity Access—Accessibility device providing additional input options

 Verity Key—USB security key

atsec performed the source code review on the basis of an Agreement between
Freeman, Craft, McGregor Group Inc., with the State of California, which states that the
source code review includes examining the system in a manner that will provide the
California Secretary of State with a basis for evaluating the extent to which the source
code meets applicable standards. The threat model included in the Agreement is
reproduced below and defines the threat parameters for the scope of this examination.

2.2 Inputs

The reviewers were provided with a Technical Data Package (TDP) including the source
code and a set of documents that support the findings in this report. These documents
were examined during the source code review to better understand the voting system
and identify discrepancies between the documentation and the source code. These
documents are listed in the References section.

2.3 Threat Model

This assessment is centered on the threat model given in the Request for Quotation
(RFQ). The system is expected to counter the following attacks.

 Alter vote recording

 Alter vote results

 Alter critical election data, such as audit logs

 Conduct a denial of service attack on the voting system

To the extent possible, vulnerabilities found have been reported with an indication of
whether the exploitation of the vulnerability would require access by any of the following.

 Voter: Usually has low knowledge of the voting machine design and configuration.
Some may have more advanced knowledge. May carry out attacks designed by
others. They have access to the machine(s) for less than an hour.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 8 of 29

 Poll worker: Usually has low knowledge of the voting machine design and
configuration. Some may have more advanced knowledge. May carry out attacks
designed by others. They have access to the machine(s) for up to one week, but
all physical security has been put into place before the machines are received.

 Elections official insider: Wide range of knowledge of the voting machine design
and configuration. May have unrestricted access to the machine for long periods
of time. Their designated activities include:

o Set up and pre-election procedures

o Election operation

o Post-election processing of results

o Archiving and storage operations

 Vendor insider: Has great knowledge of the voting machine design and
configuration. They have unlimited access to the machine before it is delivered to
the purchaser and, thereafter, may have unrestricted access when performing
warranty and maintenance service, and when providing election administration
services.

The atsec team did not attempt to demonstrate exploitability of identified potential
vulnerabilities. However, identified potential vulnerabilities were described along with the
anticipated factors necessary to mount an attack.

2.4 Methodology

The atsec team was tasked with the Source Code review which included but was not
limited to the following aspects.

 Evaluation of potential vulnerabilities and related issues (code quality and
standards compliance), considering that an exploitable issue in a component that
is not in itself security relevant could be used to subvert more critical data. This is
an issue whenever the architecture of the system does not provide strong
separation of the components.

 Adherence to other applicable coding format conventions and standards including
best practices for the coding language used, and any IEEE, NIST, ISO or NSA
standards or guidelines which the Contractor find reasonably applicable.

 Analysis of the program logic and branching structure.

 Search for exposures to commonly exploited vulnerabilities, such as buffer
overflows, integer overflow, inappropriate casting or arithmetic.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 9 of 29

 Evaluation of the use and correct implementation of cryptography and key
management.

 Analysis of error and exception handling.

 Evaluation of the likelihood of security failures being detected.

o Are audit mechanisms reliable and tamper resistant?

o Is data that might be subject to tampering properly validated and
authenticated?

 Evaluation of the risk that a user can escalate his or her capabilities beyond those
authorized.

 Evaluation of whether the design and implementation follow sound, generally
accepted engineering practices. Is code defensively written to protect against:

o Bad data;

o Errors in other modules;

o Changes in environment;

o User errors; and

o Other adverse conditions.

 Evaluation of whether the system is designed in a way that allows meaningful
analysis, including:

o Is the architecture and code amenable to an external review (such as this
one)?

o Could code analysis tools be usefully applied?

o Is the code complexity at a level that it obfuscates its logic?

 Search for embedded, exploitable code (such as “Easter eggs”) that can be
triggered to affect the system.

 Search for dynamic memory access features which would permit the replacement
of certificated executable code or control data or insertion of exploitable code or
data.

 Search for use of runtime scripts, instructions, or other control data that can affect
the operation of security relevant functions or the integrity of the data.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 10 of 29

2.4.1 Potential vulnerabilities

The reviewers used the following public repositories to identify vulnerabilities that may
affect the system.

 MITRE Common Vulnerability and Exposures (CVEs)
 NIST NVD using Common Platform Enumeration (CPE) tool
 COTS component support sites (e.g., HP, JRSoftware, NHibernate)

Although this list may not have entries for the voting system itself, constituent software
and commercial off-the-shelf (COTS) components that the voting system integrates may
contain vulnerabilities. The review team identified such components that the system
relies upon and conducted searches for these products as well.

2.4.2 Code quality

While performing the examination of the code for other activities, the reviewers identified
and recorded areas within the code base that demonstrate poor code quality. Although
poor code quality does not necessarily identify vulnerabilities, it does provide an
indication that vulnerabilities may exist.

The following coding standards were used during this analysis.

 California Voting System Standards, October 2014

The reviewers also compared the code against the Verity Coding Standards that was
found in the TDP.

The team also performed numerous informal static analysis activities on the source code
to gather code quality data using customized command scripts.

2.4.3 Design

The source code review team used the technical data package, source code, and any
material provided or otherwise publicly available to construct an understanding of the
architecture and design of the voting system. This understanding included discovering
the external interfaces and their security mechanisms and controls, particularly as much
information as possible was gathered to support conclusions regarding the ability for a
threat agent to tamper with or circumvent security controls.

Interfaces represent the primary attack surface of the voting system. Interfaces can
include web-based interfaces, native graphic user interfaces, command line interfaces, or
technical interfaces that are not designed for direct user interaction (e.g., database
connections). Each of these interfaces was examined to identify the security controls that
counter the threats.

Secure interfaces also depend on filtering out poorly structured or corrupt data. The
review team specifically checked for input validation mechanisms and determined if
related attacks, such as command injection are possible.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 11 of 29

2.4.4 Cryptography

While cryptography is often the most difficult security mechanism to break directly,
misuse of cryptographic primitives can render that protection weak or non-existent. The
review team identified where cryptography is used throughout the source code and
determined if its use is appropriate for the given purpose. For example, using a
cryptographic hash function to protect passwords is appropriate while using an
encryption algorithm with a hard-coded key is not.

2.4.5 Back doors

Those with access to the voting system during development and having malicious intent
can place back doors into the source code so that they could gain unauthorized access
to the voting system during operation. Back doors are extremely hard to find because a
seasoned programmer can obfuscate code to look benign.
The review team marked areas of vulnerabilities as identified by command line searches,
as described in section 4.5, for further scrutiny. For example, a particular area of code
with poor code quality and access to sensitive information such as authentication
credentials might be a good place to hide a back door. The reviewers gave such areas
extra scrutiny by considering insider threats in addition to unintentional implementation
flaws.

2.4.6 Measurement of findings

A summary of findings is listed in section 4. Each finding contains the following
information.

 A description of the vulnerability or weakness

 An assessment of what threats are involved in the possible exploitation of the
vulnerability or weakness

 A categorization of the findings, which can be:

o A weakness in the source code. Weaknesses are issues identified in the
source code that are not directly exploitable but may indicate the existence of
exploitable vulnerabilities within the source code.

o A non-conformity in the code quality standards. Non-conformities do not
necessarily imply weaknesses, though the rationale for the requirement is
often based on preventing weaknesses.

o A potential vulnerability in the source code. The reviewers consider potential
vulnerabilities to likely be exploitable.

o A vulnerability in the source code. The reviewers have either shown or have
referenced other parties who have asserted the vulnerability to be exploitable.

 A severity level of the findings, which can be either:

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 12 of 29

o A low severity finding. Low severity implies either the impact to the product is
low or already mitigated by the system, or the difficulty in exploitation would
likely require unrestricted access to the systems, expert knowledge of the
system, or would require cost prohibitive resources.

o A medium severity finding. Medium severity implies either the impact of
exploitation to the product would be significant, or the difficulty in exploitation
would likely require extended access to the systems, informed knowledge of
the system, or would require significant resources.

o A high severity finding. High severity implies either the impact of exploitation to
the product would result in complete compromise of security, or the difficulty in
exploitation would likely require little to no access or knowledge of the systems
or little to no resources.

2.4.7 Depth of analysis

Because of the complexity and volume of the material to be reviewed, limited time
available and broad scope (assessment of documents and quality of the code, along with
source code review), the team concentrated on surveying a breadth of categories of
vulnerabilities that they could identify, and only reviewed in depth enough samples of
each of the categories to determine how that vulnerability was being handled. For all the
categories, no attempt was made to enumerate how many instances existed. Other
source code review projects would be likely to find more instances, but those findings
should be within the listed categories.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 13 of 29

3 Description of the Verity Voting System
The Verity Voting System is a suite of software, hardware, device and peripheral
components for conducting and reporting elections.

3.1 Voting System Functions

The Verity Voting System provides a number of high-level functions necessary to
conduct an election. These activities include the following.

 Ballot data creation

 Election definition and ballot production

 Device configuration

 Polling-place-based ballot printing

 Polling place Ballot Marking Device

 Polling place ballot review

 Polling place digital scanning for paper ballots

 High-speed, large-volume ballot scanning

 Ballot Adjudication

 Counting of votes/tabulation

 Consolidation and reporting of results and audit logs

 Audits and recounts

3.2 Physical Components

Several components are used in conducting an election with Verity. Some are
specialized hardware components built or assembled by Verity, others are COTS
products used to run Verity. The following are the specialized hardware components.

Verity Print—An on-demand device for printing and issuing blank paper ballots to
voters. The voter completes their ballot and casts it using either Verity Scan or by
putting it in a ballot box to be scanned centrally.

Verity Touch Writer—An accessible device for marking digital ballots using a touch
screen. After confirming their selections the vote prints the ballot on the attached
printer and casts it.

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 14 of 29

Verity Reader—A device for optionally verifying a ballot. A voter can insert their
marked paper ballot to verify how it will be counted and hear audio read-back of their
choices. It does not store or tabulate votes.

Verity Scan—A polling-place-based digital device for scanning and casting either
hand-marked or printed ballots. The voter can check and correct the ballot before
casting and the scanned ballot is depositing into a secure ballot box for storage.

Verity vDrive—A specially formatted USB media used to transfer the election ballot
styles to voting devices, to transfer cast vote records to Verity Count for tabulation,
and to collect and transfer audit logs.

Verity Access—An accessibility device attached to each Verity Touch Writer and
Verity Reader device to provide the reader with additional input options including a
scrolling wheel and select button, headphones, and a connection that may be used
with tactile buttons or sip-and-puff devices.

Verity Key—A USB device for Verity’s two-factor authentication process. Critical
operations require the Verity Key to be inserted and a passcode to be entered.

3.3 Logical Components

Verity Data—Ballot design software for entering, importing, and managing election
data, jurisdiction data and translations as well as recording and importing audio. It
also allows users to choose ballot templates, view ballot previews and lock the
election data so that it can be opened in Verity Build.

Verity Build—Election definition, media creation, and ballot printing software for
opening elections, proofing data, configuring device settings, printing ballots and
writing vDrives and Verity Keys. It also performs the final steps to prepare ballots for
elections.

Verity Central—Central ballot scanning and adjudication software for scanning and
reviewing ballots, resolving write-in votes and voter intent issues, and writing cast
vote records to vDrive for tabulation in Verity Count.

Verity Count—Ballot tabulation and reporting software for reading vDrives, tabulating
ballots, resolving write-in votes, printing reports, and exporting election results.

3.4 Interfaces

The voting system moves data between external interfaces and internal components in a
variety of ways: peripheral devices, files, and databases. This section will discuss these
interfaces in more detail.

3.4.1 Network interfaces

The logical components located at the Data/Build (can be one machine), Central, and
Count sites will use Ethernet for network connectivity. Hart will provide the hardware
necessary to instantiate a closed network at each individual location. The use of non-
hardwired connectivity will not be permitted and such functionality has been disabled
(e.g., wireless, Bluetooth).

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 15 of 29

The communication channels to other IT entities will be protected using TLS over
TCP/IP.

3.4.2 Peripheral devices

Data is moved between logical components using different media. Depending on the
purpose of the data, the appropriate transport mechanism is chosen. Data will either be
transported as a digital file or physically printed material. Table 1 summarizes the
appropriate export media for each device or area.

Component Export mechanism

Verity Data and Verity Build (these are on
the same system)

 Verity vDrive (election definitions)

 Verity Keys (voting equipment
programming)

 Pre-voting paper ballots

Verity Print Pre-voting ballots

Verity Central Verity vDrive (Cast Vote Records)

Verity Touch Writer Voter marked ballots (digital form)

 Verity vDrive (audit logs)

Verity Scan Verity vDrive (Cast Vote Records and audit
logs)

Table 1: Device/Area Media

3.4.3 Files

Many file types are used by various components of the voting system and are transferred
by a variety of interfaces and media. The following types of data are stored in the voting
system.

 Election data and configuration files
 Media files (e.g., audio)
 OS/WES7 configuration files
 Device configuration files
 Election results files
 Cast Vote Record (CVR) data files
 Audit logs

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 16 of 29

 Extensible Markup Language (XML)
 PMQ files
 Signature files

3.4.4 Databases

The Verity voting system uses two different Microsoft SQLServer databases: SQLServer
2012 and SQLServer Compact. Microsoft SQLServer 2012 was stated as the version
used. However, it is unclear which version of SQLServer Compact is used.

The following applications that will have access to the Microsoft SQLServer 2012
database.

 Verity Build

 Verity Central

 Verity Count

 User Management

 Election Manager

Verity Device databases are created using Microsoft SQLServer Compact. These
devices include the following.

 Verity Scan

 Verity Touch Writer

 Verity Reader

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 17 of 29

4 Findings

4.1 Public Vulnerability Search

Table 6 lists the publicly known vulnerabilities identified that could potentially impact the
voting system.

Name (Vulnerable
component)

Description Additional information

CVE-2016-2243 (HP
Z240 Workstation)

Local users can cause the
system to fail to recover the
BIOS.

https://support.hp.com/us-
en/document/c05012469

https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-
2016-2243

Meltdown/Spectre
(HP Z240
Workstation)

The computer system is
susceptible to the
Meltdown/Spectre malware.

https://support.hp.com/us-
en/document/c05869091

Outdated version
(SQLServer 2012)

The software version being
used (11.0.2100) is out
dated. There have been
numerous Service Packs
and Security updates since
this release. The reviewer
suggests updating to
address any discovered
(and potentially
undiscovered)
vulnerabilities. The latest
service pack is Service
Pack 4.

https://support.microsoft.com/en-
us/help/321185/how-to-determine-
the-version-edition-and-update-
level-of-sql-server-an

SP1 installation
failure (Windows
Embedded System
7)

Certain updates related to
SP1 may fail when updating
the OS.
Some updates that could
fail are:

 KB2949927:
Availability of SHA-2
Hashing Algorithm
for Windows 7 and
Windows Server
2008 R2

 KB3033929: Security
Update for Windows
7 for x64-based
Systems

https://support.microsoft.com/en-
us/help/3189682/serviceability-
update-for-windows-embedded-
standard-7-sp1-posready-7-a

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 18 of 29

Name (Vulnerable
component)

Description Additional information

 KB3110329: Security
Update for Windows
7

The reviewer is providing
this information to ensure
the developer is aware of
this situation and develop
an appropriate mitigation
strategy.

Meltdown (Windows
Embedded System
7)

The operating system used
is susceptible to the
Meltdown malware.

https://news.softpedia.com/news/
microsoft-re-issues-kb4056894-
kb4056892-meltdown-spectre-for-
some-amd-chips-519350.shtml

Meltdown patch (KB4056894):
https://www.catalog.update.micros
oft.com/Search.aspx?q=4056894

Bugs (NHiberate) The reviewer was unable to
determine the version of
NHibernate the system is
using. The link provided will
list bugs found in all
versions of the software.
The reviewer suggests the
developer look at the list
and find bugs against the
version of NHiberate being
used.

https://github.com/nhibernate/nhib
ernate-
core/issues?q=is%3Aopen+is%3A
issue+label%3A%22t%3A+Bug%
22

Bugs (Fluent
NHibernate)

The reviewer was unable to
determine the version of
Fluent NHibernate the
system is using. The link
provided will list bugs found
in all versions of the
software. The reviewer
suggests the developer look
at the list and find bugs
against the version of Fluent
NHiberate being used.

https://github.com/FluentNHiberna
te/fluent-
nhibernate/issues?q=is%3Aopen+
is%3Aissue+label%3Abug

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 19 of 29

Name (Vulnerable
component)

Description Additional information

DLL Hijacking
(InnoSetup/Inno
Script Setup)

The software is susceptible
to including a Trojan horse
DLL that is located in an
untrusted path on the
system.

https://packetstormsecurity.com/fil
es/134694/jrsoft-dllhijack.txt

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-
2010-4833

http://jrsoftware.org/files/is5-
whatsnew.htm

http://news.jrsoftware.org/news/in
nosetup/msg103180.html

http://news.jrsoftware.org/news/in
nosetup/msg103182.html

Malformed Windows
binary not protected
(McAfee Application
Control for Devices)

The reviewer noticed how
the developer has
whitelisted what files should
run on the system. The
following CVE is something
to be aware of in the event
a file is added that the
program may think is non-
executable.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-
2014-9920

https://kc.mcafee.com/corporate/in
dex?page=content&id=SB10077

Table 2: Potential Vulnerabilities Identified

4.2 Static Code Analysis & Documentation Review

Table 7 summarizes the findings that arose from the source code review team's
assessment of the voting system. Potential exploitation of a weakness or vulnerability
and type of attacker is noted where applicable.

Description Assessment Categorization

Usage of SHA-1 to
sign data and sign
hash. Weakness of
SHA-1 could allow for
corruption of data.

The use of SHA-1 for signature
generation is generally disallowed by
NIST (except where specifically
allowed in NIST protocol-specific
guidance); however, its use for digital
signature verification is allowed for
legacy use (i.e., the verification of
already-generated digital signatures).

Note: NIST still does allow testing of
SHA-1 although NIST have requested
federal agencies to stop using SHA-1.

Type: potential
vulnerability and
non-conformity
(FIPS)
Severity: low

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 20 of 29

Description Assessment Categorization

NIST have provided guidance on
mitigating the risk of using SHA-1 in
SP800-131a.

Microsoft SQL Server
2012 (MSSQL) is not
patched.

Not having the latest version of the
software leaves the system open to
undiscovered and unpatched
vulnerabilities.

The version of MSSQL installed is
11.0.2100. There have been
numerous Service Packs and Security
updates since this release. In order to
address any discovered (and
potentially undiscovered)
vulnerabilities, updating to the latest
Service Pack is recommended
(Service Pack 4).

Type: potential
vulnerability
Severity: medium

The ability to write
directly to memory is a
potential vulnerability.

The code has access to the system
memory. Malicious code could be
interjected and executed.

Type: potential
vulnerability
Severity: low

Although compliant
with CVSS 7.2.3 h)
requirements,
password complexity
rules do not follow best
practices. The
password complexity
criteria allow for a
reduced strength
password. If the
system becomes
compromised, this will
allow a threat agent to
determine a user’s
password more
quickly.

The algorithm used to determine if a
user’s password is strong enough is
not using best practices. The
algorithm does not enforce the use of
lower case lettering. This will allow a
weaker password, by default.

Also, the minimum length acceptable
is too small. Current practice for
secure password length is 12 to 15
characters.

Type: potential
vulnerability
Severity: low

Password information
is not being stored
using an
appropriate/suitable
class. Password

The password field is being stored in
the String class.

The All-in-one Code Framework
Coding Standards states that MSDN
provides guidelines for using the .NET

Type: potential
vulnerability
Severity: medium

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 21 of 29

Description Assessment Categorization

information is being
stored in an unsecure
part of memory while
being used. Code
could be interjected,
using other parts of the
code base, to access
this sensitive
information.

framework.

Since passwords are sensitive
information, a different class more
suitable to this type of information
should be used, such as the
SecureString class.

From the Microsoft MSDN site:

When created properly, a
SecureString instance provides
more data protection than a String.
When creating a string from a
character-at-a-time source, String
creates multiple intermediate in
memory, whereas SecureString
creates just a single instance.
Garbage collection of String
objects is non-deterministic. In
addition, because its memory is
not pinned, the garbage collector
will make additional copies of
String values when moving and
compacting memory. In contrast,
the memory allocated to a
SecureString object is pinned, and
that memory can be freed by
calling the Dispose method.

Usage of authorization
check for a plugin
could allow
unauthorized use of
the plugin and
manipulation by an
unauthorized user.

There is use of AuthorizationException
in the modules. A catch of the
exception was detected but it did not
handle the exception.

Type: vulnerability
Severity: medium

The SQL query strings
are being constructed
in a way that is
vulnerable to SQL
injection attacks.

CVSS 5.2.8

SQL statements are being constructed
using ‘+’ or append method on a
class.

Best practice (OWASP) is to use
parameterized queries for constructing
SQL statements.

Type: vulnerability
Severity: medium

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 22 of 29

Description Assessment Categorization

Unable to determine
security policy
regarding configuration
file access and
modification.

The security policy was unable to be
fully understood based on the PDFs
from the technical document package.

Type: potential
vulnerability
Severity: low

There are instances
where exception/error
handling doesn’t follow
a consistent
implementation.

CVSS 5.2.5

There are instances where
exception/error handling doesn’t follow
a consistent implementation.
Additionally, these instances do not
follow the guidelines described in the
Verity Logging Technical
Requirements Document (section 5.3:
Events that must be logged). For
example, there are catch blocks that
do not write to any log files, there are
instances where exceptions are
caught and assigned to variables
where nothing is done with that
variable, and there are empty catch
blocks.

Type: non-
conformity,
potential
vulnerability

Severity: low

Product is no longer
FIPS 140-2 certified or
conformant as claimed.

Currently Non-
approved algorithms
may contain
exploitable
weaknesses and any
data protected by
encryption may be at
risk.

CVSS 7.5.4 a) iii)

Product documentation states all
cryptographic modules used are FIPS
140-2 validated.

The FIPS 140-2 certificates listed in
“Verity Operational Environment
4005515 C00.pdf,” Appendix A,
(#1319,#1326,#1327,#1328,#1329,#1
330,#1331) are all now on the CMVP
historical list.

Each historical certificate carries the
following disclaimer:

"Historical - The referenced
cryptographic module should not be
included by Federal Agencies in new
procurements. Agencies may make a
risk determination on whether to
continue using this module based on
their own assessment of where and
how it is used."

FIPS requirements have changed
since 2011 when these certificates
were issued.

Type: non-
conformity,
potential
vulnerability

Severity: medium

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 23 of 29

Description Assessment Categorization

Technically, all modules used have
been validated as conformant in 2011,
but now the certifications have
expired.

Note: CVSS is not clear in regard to if
historical FIPS 140-2 certifications are
allowed.

Table 3: Summary of issues discovered during the static code analysis

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 24 of 29

Glossary
AES Advanced Encryption Standard

API Application Programming Interface

CAPI Crypto API

CBC Cipher Block Chaining

CMVP Cryptographic Module Validation Program

COTS Commercial Off-The-Shelf

CPE Common Platform Enumeration

CRC Cyclic Redundancy Check

CTR Counter

CVE Common Vulnerability and Exposures

CVR Cast Vote Record

CWE Common Weakness Enumeration

TDES Triple-Data Encryption Standard

EC Elliptic Curve

ECDSA Elliptic Curve Digital Signature Algorithm

EDM Election Data Manager

ELS Event Log Service

EMS Election Management System

EQC Election Qualification Code

ERM Election Reporting Manager

EVS Verity Voting System

FIPS Federal Information Processing Standard

HMAC Hash Message Authentication Code

HTTP Hyper Text Transfer Protocol

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 25 of 29

HTTPS Hyper Text Transfer Protocol Secure

IP Internet Protocol

IV Initialization Vector

KDF Key Derivation Function

LAN Local Area Network

OS Operating System

PBKDF Password-Based Key Derivation Function

PC Personal Computer

PKI Public Key Infrastructure

PRF Pseudo-Random Function

PRNG Pseudorandom Number Generator

RCV Ranked Choice Voting

RMS Removable Media Service

RNG Random Number Generator

RSA Rivest-Shamir-Adleman

SHA Secure Hash Algorithm

SHS Secure Hash Standards

SOS Secretary of State

TCP Transmission Control Protocol

TDP Technical Data Package

TRD Technical Requirements Document

USB Universal Serial Bus

VAT Voter Assist Terminal

XML Extensible Markup Language

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 26 of 29

References
Documentation provided for the source code review included Verity EVS product
documentation and other publicly available standards documents. The atsec source code
review team also consulted other publicly available documents listed in the last group.

Verity Documents
PC Application Framework UI Design Document, Version 5

Print Design

Reader Design

Release Notes Verity Voting 3.0.0, Version A.00, Published 09-08-2016

Scan Design

Touch Writer Design

Verity 3.0 Desktop Database Schema

Verity 3.0 Device Database Schema

Verity Airgap Interface Technical Reference, Version A.02, Published 2014

Verity API Specification, Version A.03, Published 09-06-2017

Verity Base Station Microcontroller, Version A.01, Published 05-26-2015

Verity Build 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Build TRD, Version A.10, Published 10-14-2015

Verity Build User Interface Design Document, Version 11

Verity California Use Procedures, Verity Voting 3.0, Published 2017

Verity Central 3.0 Modification TRD, Version A.01, Published 07-18-2017

Verity Central TRD, Version A.07, Published 10-22-2015

Verity Central User Interface Specification, Version 8

Verity Coding Standard, Version A.15, Published 03-30-2018

Verity Count 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Count TRD, Version A.10, Published 11-02-2015

Verity Count User Interface Specification, Version 9

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 27 of 29

Verity Data 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Data TRD, Version A.06

Verity Desktop User Interface Design Document, Version 3

Verity Device Suite 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Device Suite TRD, Version A.09, Published 11-03-2015

Verity Election Definition Data TRD, Version A.01, Published 10-14-2015

Verity Election Management TRD, Version A.06, Published 10-21-2015

Verity Election Management User Interface Design Document, Version 1

Verity Key Design Technical Document, Version A.01, Published 05-26-2015

Verity Logging 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Logging Design Technical Document, Version 1.03, Published 05-26-2015

Verity Logging TRD, Version A.04, Published 10-21-2015

Verity Print TRD, Version 6, Published 11-03-2015

Verity Reader TRD, Version A.01, Published 09-01-2017

Verity Risk and Threat Assessment, Version B.00, Published 02-14-2017

Verity Scan 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Scan TRD, Version A.07, Published 10-27-2015

Verity Security Requirements Document, Version A.07, Published 10-28-2015

Verity Shared Device User Interface Design Document, 7 Version

Verity Software Architecture & Design, Version C.00, 02-14-2017

Verity System Design Verity Electronics Specification, Version A.13, Published 05-01-
2017

Verity Touch Writer 3.0 Modification TRD, Version A.01, Published 09-01-2017

Verity Touch Writer TRD, Version A.09, Published 11-03-2015

Verity Touch Writer User Interface Design Document, Version 12

Verity User Management 3.0 Modification, Version A.01, Published 09-01-2017

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 28 of 29

Verity User Management TRD, Version A.01, Published 10-21-15

Verity User Management User Interface Design Document, Version 2

Verity Voting 3.0 System Limits, Version C.00, Published 08-30-2017

Verity Voting Verity Operational Environment, Version C.00, Published 09-11-2017

Public Documents
All-In-One Code Framework Coding Standards, Published 2014

California Voting System Standards, Published October 2014

National Institute of Standards and Technology, Implementation Guidance for FIPS
PUB 140-2 and the Cryptographic Module Validation Program, January 2016,
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

National Institute of Standards and Technology, FIPS 140-2 Security Requirements
for Cryptographic Modules, May 2001, http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf

National Institute of Standards and Technology, FIPS 140-2 Annex A: Approved
Security Functions, December 2002, http://csrc.nist.gov/publications/fips/fips140-
2/fips1402annexa.pdf

National Institute of Standards and Technology, FIPS 180-4 Secure Hash Standard
(SHS), March 2012, http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

National Institute of Standards and Technology, FIPS 186-4 Digital Signature
Standard (DSS), July 2013, http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-
4.pdf

National Institute of Standards and Technology, FIPS 197 Advanced Encryption
Standard, November 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

National Institute of Standards and Technology, FIPS 198-1 The Keyed-Hash
Message Authentication Code (HMAC), July 2008,
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

National Institute of Standards and Technology, NIST Special Publication 800-57,
Recommendation for Key Management—Part 1: General (Revised), January 2016,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

National Institute of Standards and Technology, NIST Special Publication 800-90A,
Recommendation for Random Number Generation Using Deterministic Random Bit
Generators, June, 2015,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

Last update: 2018-09-07 Classification: Public Status: FINAL
Version: 2.0 ©2018 atsec information security corporation Page 29 of 29

National Institute of Standards and Technology, NIST Special Publication 800-131A,
Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths, November, 2015, https://csrc.nist.gov/publications/detail/sp/800-
131a/rev-1/final

OWASP, Open Web Application Security Project, The OWASP SQL and database
Scripting Technology Knowledge Base,
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

